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1 Introduction

Within the Standard Model [1] one expects [2] a large mass di�erence �m � mH�mL > 0

between the physical mixing eigenstates BH
s (\heavy") and BL

s (\light") of the neutral

Bs meson system leading to very rapid �mt{oscillations in data samples of tagged Bs

decays. In order to measure these oscillations, an excellent vertex resolution system is

required which is a formidable experimental task. However, in a recent paper [3] it has

been shown that it may not be necessary to trace these rapid �mt{oscillations in order

to obtain insights into the fundamental mechanism of CP violation. The point is that

the time-evolution of untagged non-leptonic Bs decays, where one does not distinguish

between initially present Bs and Bs mesons, depends only on combinations of the two

exponents exp(��Lt) and exp(��Ht) and not on the rapid oscillatory �mt{terms. Since

the width di�erence �� � �H � �L of the Bs-system is predicted to be of the order 20%

of the average Bs width [4], interesting CP-violating e�ects may show up in untagged

rates [3].

In the present paper we restrict ourselves to quasi two body modes Bs ! X1X2 into

�nal states that are admixtures of CP-even and CP-odd con�gurations. The di�erent case

where the �nal states are not admixtures of CP eigenstates but can be classi�ed instead

by their parity eigenvalues is discussed in [5], where we present an analysis of angular

correlations for Bs decays governed by �b! �cu�s quark-level transitions. If both X1 and X2

carry spin and continue to decay through CP-conserving interactions, valuable information

can be obtained from the angular distributions of their decay products. Examples for such

transitions are Bs ! D�+
s (! D+

s )D
��
s (! D�

s ) and Bs ! J= (! l+l�)�(! K+K�)

which allow a determination of the Wolfenstein parameter � [6] from the time-dependences

of their untagged angular distributions as we will demonstrate in a later part of this paper.

Of course, the formalism developed here applies also to �nal states where the D��
s mesons

are substituted by higher resonances, such as Bs ! Ds1(2536)+Ds1(2536)�: For many

detector con�gurations, such higher resonances may be preferable over D��
s , because of

their signi�cant branching fractions into all charged �nal states and because of additional

mass-constraints of their daughter resonances.

If we use the CKM factor

Rb � 1

�

jVubj
jVcbj (1)

with � = sin �C = 0:22 as an additional input, which is constrained by present experi-

mental data to lie within the range Rb = 0:36 � 0:08 [7, 8, 9], � �xes the angle  in the

usual \non-squashed" unitarity triangle [10] of the CKM matrix [11] through

sin  =
�

Rb

: (2)
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Using the isospin symmetry of strong interactions to relate the �b ! �s QCD penguin

contributions to Bs ! K�+(! �K)K��(! �K) and Bs ! K�0(! �K)K�0(! �K),

another determination of  is possible by measuring the corresponding untagged angular

distributions. This approach is another highlight of our paper. The formulae describing

Bs ! K�+K�� apply also to Bs ! �0� if we make an appropriate replacement of variables

providing a fertile ground for obtaining information about the physics of electroweak

penguins.

This paper is organized as follows: In Section 2 we calculate the time-dependences of

the observables of the angular distributions for Bs decays into �nal state con�gurations

that are admixtures of di�erent CP eigenstates. The general formulae derived in Section 2

simplify considerably if the unmixed Bs ! X1X2 amplitude is dominated by a single

CKM amplitude. This important special case is the subject of Section 3 and applies to

an excellent accuracy to the decays Bs ! D�+
s D��

s and Bs ! J= � which are analyzed

in Section 4. There we demonstrate that untagged data samples of these modes allow a

determination of the Wolfenstein parameter �, which �xes the CKM angle  ifRb is known.

In Section 5 we present another method to determine  from untagged Bs ! K�+K�� and

Bs ! K�0K�0 decays. The formulae derived there are also useful to obtain information

about electroweak penguins from untagged Bs ! �0� events. Finally in Section 6 the

main results of our paper are summarized.

2 Calculation of the time-evolutions

A characteristic feature of the angular distributions for the decays Bs ! X1X2 speci�ed

above is that they depend in general on real or imaginary parts of the following bilinear

combinations of decay amplitudes:

A�
~f(t)Af (t): (3)

Here we have introduced the notation

Af(t) � A(Bs(t)! (X1X2)f ) = h(X1X2)f jHe�jBs(t)i
A ~f(t) � A(Bs(t)! (X1X2) ~f ) = h(X1X2) ~f jHe�jBs(t)i

(4)

for the transition amplitudes of initially, i.e. at t = 0, present Bs mesons decaying into

the �nal state con�gurations f and ~f of X1X2 that are both CP eigenstates satisfying

(CP)j(X1X2)f i = �fCPj(X1X2)f i
(CP)j(X1X2) ~f i = �

~f
CPj(X1X2) ~f i

(5)

with �f
CP
; �

~f
CP 2 f�1;+1g. Here f and ~f are lables that de�ne the relative polarizations

of the two hadrons X1 and X2. The tilde is useful for discussing the case where di�erent
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con�gurations ofX1X2 with the same CP eigenvalue are present. To make this point more

transparent, consider the modeBs ! J= � which has been analyzed in terms of the linear

polarization amplitudes [12] A0(t), Ak(t) and A?(t) in [13]. Whereas A?(t) describes a

CP-odd �nal state con�guration, both A0(t) and Ak(t) correspond to CP-eigenvalue +1,

i.e. to Af(t) and A ~f(t) in our notation (4) with �
~f
CP = �fCP = +1.

The amplitudes describing decays of initially present Bs mesons are given by

Af(t) � A(Bs(t)! (X1X2)f ) = h(X1X2)f jHe�jBs(t)i
A ~f(t) � A(Bs(t)! (X1X2) ~f ) = h(X1X2) ~f jHe�jBs(t)i:

(6)

Both in these expressions and in (4) the operator

He� = He�(�B = �1) +He�(�B = +1) (7)

denotes an appropriate low energy e�ective Hamiltonian with

He�(�B = +1) = He�(�B = �1)y (8)

and

He�(�B = �1) = GFp
2

X
j=u;c

v
(r)
j Qj � GFp

2

X
j=u;c

v
(r)
j

(
2X

k=1

Qj
kCk(�) +

10X
k=3

QkCk(�)

)
; (9)

where v(r)j � V �
jrVjb is a CKM factor that is di�erent for b! d and b! s transitions cor-

responding to r = d and r = s, respectively. The four-quark operators Qk can be divided

into current-current operators (k 2 f1; 2g), QCD penguin operators (k 2 f3; : : : ; 6g) and
electroweak penguin operators (k 2 f7; : : : ; 10g), with index r implicit. Note that these

operators create s and d quarks for r = s and r = d, respectively. The Wilson coe�cients

Ck(�) of these operators, where � = O(mb) is a renormalization scale, can be calculated

in renormalization group improved perturbation theory. The reader is referred to a nice

recent review [14] for the details of such calculations. There numerical results for the

relevant Wilson coe�cients are summarized and the four-quark operators Qk are given

explicitly.

Applying the well-known formalism describing Bs � Bs mixing [3, 15], a straightfor-

ward calculation yields the following expression for the time-dependence of the bilinear

combination of decay amplitudes given in (3):

A�
~f(t)Af(t) = h(X1X2) ~f jHe�jBsi�h(X1X2)f jHe�jBsi (10)

�
h
jg+(t)j2 + �

~f
CP �

�
~f g+(t) g

�
�(t) + �fCP �f g

�
+(t) g�(t) + �

~f
CP �

f
CP �

�
~f �f jg�(t)j2

i
;

3



where

jg�(t)j2 =
1

4

h
e��Lt + e��H t � 2e��t cos(�mt)

i
(11)

g+(t)g
�
�(t) =

1

4

h
e��Lt � e��H t � 2ie��t sin(�mt)

i
(12)

with � � (�L + �H)=2. The observables �f and � ~f , which contain essentially all the

information needed to evaluate the time dependence of (10), are related to hadronic

matrix elements of the combinations Qj of four-quark operators and Wilson coe�cients

appearing in the low energy e�ective Hamiltonian (9) through

�f = e�i�
(s)
M

P
j=u;c

v
(r)
j h(X1X2)f jQjjBsi

P
j=u;c

v
(r)�
j h(X1X2)f jQjjBsi

; (13)

where �
(s)
M � 2 arg(V �

tsVtb) is the Bs � Bs mixing phase. In order to evaluate � ~f , we

have simply to replace f in (13) by ~f . Note that we have neglected the extremely small

CP-violating e�ects in the Bs � Bs oscillations in order to derive (10)-(13) [3]. We shall

come back to (13) in a moment. Let us consider the CP-conjugate processes �rst. The

expression corresponding to (10) for initially present Bs mesons is very similar to that

equation and can be written as

A
�
~f (t)Af (t) = h(X1X2) ~f jHe�jBsi�h(X1X2)f jHe�jBsi (14)

�
h
jg�(t)j2 + �

~f
CP �

�
~f g

�
+(t) g�(t) + �fCP �f g+(t) g

�
�(t) + �

~f
CP �

f
CP �

�
~f �f jg+(t)j2

i
:

In the general case the tagged angular distribution for a given decay Bs(t) ! X1X2

can be written as [16]

f(�; ';  ; t) =
X
k

b(k)(t)g(k)(�; ';  ); (15)

where we have denoted the angles describing the kinematics of the decay products of X1

and X2 generically by �, ' and  . Note that we have to deal in general with an arbitrary

number of such angles. For quasi two body modes Bs(t) ! X1X2 into �nal states that

are admixtures of CP-even and CP-odd con�gurations, the observables b(k)(t) describing

the time-evolution of the angular distribution (15) can be expressed in terms of real or

imaginary parts of bilinear combinations of decay amplitudes having the same structure

as (10). The angular distribution for the tagged CP-conjugate decay Bs(t) ! X1X2 on

the other hand is given by

�f (�; ';  ; t) =
X
k

�b(k)(t)g(k)(�; ';  ); (16)

4



where the observables �b(k)(t) are related correspondingly to real or imaginary parts of bi-

linear combinations like (14). Since the states X1X2 resulting from the Bs and Bs decays

are equal, we use the same generic angles �, ' and  to describe the angular distribu-

tions of their decay products. Within our formalism the e�ects of CP transformations

relating Bs(t) ! (X1X2)f; ~f and Bs(t) ! (X1X2)f; ~f are taken into account already by

the CP eigenvalues �
~f
CP and �

f
CP appearing in (10) and (14) and do not a�ect g(k)(�; ';  ).

Therefore the same functions g(k)(�; ';  ) are present in (15) and (16).

The main focus of this paper are untagged rates, where one does not distinguish be-

tween initially present Bs and Bs mesons. Such studies are obviously much more e�cient

from an experimental point of view than tagged analyses. In the distant future it will

become feasible to collect also tagged Bs data samples and to resolve the rapid oscillatory

�mt{terms. Then Eqs. (10) and (14) describing the corresponding observables should

turn out to be very useful.

Combining (15) and (16) we �nd that the untagged angular distribution takes the form

[f(�; ';  ; t)] � �f (�; ';  ; t) + f(�; ';  ; t) =
X
k

h
�b(k)(t) + b(k)(t)

i
g(k)(�; ';  ): (17)

As we will see in a moment, interesting CP-violating e�ects show up in this untagged

rate, if the width di�erence �� is sizable. The time-evolution of the relevant observablesh
�b(k)(t) + b(k)(t)

i
behaves as the real or imaginary parts of

h
A�

~f(t)Af(t)
i
� A

�
~f (t)Af(t) +A�

~f(t)Af(t) =
1

2
h(X1X2) ~f jHe�jBsi�h(X1X2)f jHe�jBsi

�
h�
1 + �

~f
CP �

f
CP�

�
~f �f

� �
e��Lt + e��H t

�
+
�
�
~f
CP �

�
~f + �fCP �f

� �
e��Lt � e��H t

�i
: (18)

In order to calculate this equation, we have combined (10) with (14) and have moreover

taken into account explicitly the time-dependences of (11) and (12). We can distinguish

between the following special cases:

� ~f = f :

h
jAf(t)j2

i
=

1

2
jh(X1X2)f jHe�jBsij2 (19)

�
h�
1 + j�f j2

� �
e��Lt + e��H t

�
+ 2 �fCP Re(�f )

�
e��Lt � e��H t

�i

� ~f 6= f and �
~f
CP = �fCP:

h
A�

~f (t)Af(t)
i
=

1

2
h(X1X2) ~f jHe�jBsi�h(X1X2)f jHe�jBsi (20)

�
h�
1 + ��~f �f

� �
e��Lt + e��H t

�
+ �fCP

�
��~f + �f

� �
e��Lt � e��H t

�i

5



� ~f 6= f and �
~f
CP = ��fCP:h

A�
~f
(t)Af (t)

i
=

1

2
h(X1X2) ~f jHe�jBsi�h(X1X2)f jHe�jBsi (21)

�
h�
1� ��~f �f

� �
e��Lt + e��H t

�
� �fCP

�
��~f � �f

� �
e��Lt � e��H t

�i
:

As advertised, the rapidly oscillating �mt{terms cancel in the untagged combinations

described by (18). While the time-dependence of (19) was given in [3], the explicit time-

dependences of (20) and (21) have not been given previously. They play an important

role for the untagged angular distribution (17).

3 Dominance of a single CKM amplitude

If we look at expression (13), we observe that �f and � ~f su�er in general from large

hadronic uncertainties. However, if the unmixed Bs ! X1X2 amplitude is dominated

by a single CKM amplitude proportional to a CKM factor v
(r)
j , the unknown hadronic

matrix elements cancel in (13) and both � ~f and �f take the simple form

� ~f = �f = e2i�
(r)
j ; (22)

where �(r)j �
�
arg(V �

jrVjb)� arg(V �
tsVtb)

�
is a CP-violating weak phase consisting of the

corresponding decay and Bs � Bs mixing phase. Consequently, in that very important

special case, (18) simpli�es to

h
A�

~f(t)Af(t)
i
=

1

2
jh(X1X2) ~f jHe�jBsih(X1X2)f jHe�jBsijei(�f�� ~f) (23)

�
��
1 + �

~f
CP �

f
CP

� �
e��Lt + e��H t

�
+
�
�
~f
CP e

�2i�
(r)
j + �fCP e

2i�
(r)
j

��
e��Lt � e��H t

��
;

where �f and � ~f are CP-conserving strong phases. They are induced through strong �nal

state interaction processes and are de�ned by

h(X1X2)f jHe�jBsi = e+i�f e�i�
(r)
j (24)

h(X1X2) ~f jHe�jBsi� = e�i� ~f e+i�
(r)
j : (25)

Note that the structure of (24) and (25), which is essentially due to the fact that the

unmixed Bs ! X1X2 amplitude is dominated by a single weak amplitude, implies that

the weak phase factors e�i�
(r)
j and e+i�

(r)
j cancelled each other in (23) and that only the

strong phases play a role as an overall phase in this equation. We would like to emphasize

that such a simple behavior is not present in the general case where more than one weak

amplitude is present.

The time-evolution of (23) depends only on cos 2�(r)j and sin 2�(r)j , since we have only

to deal with the following two cases:

6



� �
~f
CP = �fCP: h

A�
~f(t)Af(t)

i
= jh(X1X2) ~f jHe�jBsih(X1X2)f jHe�jBsijei(�f�� ~f ) (26)

�
h�
e��Lt + e��H t

�
+ �fCP

�
e��Lt � e��H t

�
cos 2�(r)j

i

� �
~f
CP = ��fCP:h
A�

~f
(t)Af(t)

i
= (27)

jh(X1X2) ~f jHe�jBsih(X1X2)f jHe�jBsijei(�f�� ~f ) i �fCP
�
e��Lt � e��H t

�
sin 2�(r)j :

Whereas the structure of (26), in particular the cos 2�(r)j term, has already been dis-

cussed for ~f = f in [3], to the best of our knowledge it has not been pointed out so far

that untagged data samples of angular distributions for certain non-leptonic Bs decays

allow also a determination of sin 2�
(r)
j with the help of (27). These sin 2�

(r)
j terms play an

important role if the weak phase �
(r)
j is small. The point is that sin 2�

(r)
j is proportional

to �(r)j in that case, while cos 2�(r)j = 1 +O
�
�
(r)2
j

�
. Consequently we obtain up to terms

of O
�
�
(r)2
j

�
:

� �
~f
CP = �fCP = +1:

h
A�

~f
(t)Af(t)

i
= 2jh(X1X2) ~f jHe�jBsih(X1X2)f jHe�jBsijei(�f�� ~f )e��Lt (28)

� �
~f
CP = �fCP = �1:

h
A�

~f
(t)Af(t)

i
= 2jh(X1X2) ~f jHe�jBsih(X1X2)f jHe�jBsijei(�f�� ~f )e��H t (29)

� �
~f
CP = ��fCP:h

A�
~f(t)Af(t)

i
= (30)

2 i �fCP jh(X1X2) ~f jHe�jBsih(X1X2)f jHe�jBsijei(�f�� ~f )
�
e��Lt � e��H t

�
�
(r)
j :

We observe that only the mixed combination (30) is sensitive, i.e. proportional, to the

small phase �
(r)
j and allows an extraction of this quantity. These considerations have an

interesting phenomenological application as we will see in the following section.
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4 The \gold-plated" transitions Bs ! D�+
s D��

s and

Bs ! J= � to extract the Wolfenstein parameter �

Concerning the dominance of a single CKM amplitude, in analogy to Bd ! J= KS mea-

suring sin 2� to excellent accuracy [17] (� is another angle of the unitarity triangle [10]),

the \gold-plated" modes are Bs decays caused by �b ! �cc�s quark-level transitions. The

corresponding exclusive modes relevant for our discussion are Bs ! D�+
s (! D+

s )D
��
s (!

D�
s ) and Bs ! J= (! l+l�)�(! K+K�). They are dominated to an excellent accu-

racy by the CKM amplitudes proportional to v(s)c = V �
csVcb. Therefore the corresponding

weak phase �
(r)
j de�ned after (22) is related to elements of the CKM matrix [11] through

�(s)c = [arg(V �
csVcb) � arg(V �

tsVtb)]: (31)

At leading order in the Wolfenstein expansion [6] this phase vanishes. In order to obtain a

non-vanishing result, we have to take into account higher order terms in the Wolfenstein

parameter � = sin �C = 0:22 (for a treatment of such terms see e.g. [6, 8]) yielding [18, 19]

�(s)c = �2� = O(0:015): (32)

Consequently the small weak phase �(s)c measures simply the CKM parameter � [6, 18, 19].

Another interesting interpretation of (31) is the fact that it is related to one angle

in a rather squashed (and therefore \unpopular") unitarity triangle [20]. Other useful

expressions for (31) can be found in [21]. If we use the CKM factor Rb de�ned by (1) as

an additional input, � �xes the notoriously di�cult to measure angle  of the unitarity

triangle [21]. That input allows, however, also a determination of  (or of the Wolfenstein

parameter �) from the mixing-induced CP-violating asymmetry arising in Bd ! J= KS

measuring sin 2�. Comparing these two results for  (or �), an interesting test whether

the phases in Bd �Bd and Bs �Bs mixing are indeed described by the Standard Model

can be performed.

The extraction of the weak phase Eq. (32) from Bs ! J= �, D�+
s D��

s , etc. is not

as clean as that of � from Bd ! J= KS. The reason is that although the contributions

to the unmixed amplitudes proportional to V �
ubVus are similarly suppressed in both cases,

their importance is enhanced by the smallness of �(s)c versus � [22].

Given that �(s)c is small, we see that (28)-(30) apply to an excellent approximation to

the exclusive channels Bs ! D�+
s (! D+

s )D
��
s (! D�

s ) and Bs ! J= (! l+l�)�(!
K+K�), i.e. to X1X2 2 fD�+

s D��
s ; J= �g. Whereas the angular distribution of the latter

process has been derived in [13], a follow-up note [23] not only examines the angular

distributions for both processes but also discusses an e�cient method for determining the

relevant observables { the moment analysis [24] { and predicts these observables, thereby

allowing comparisons with future experimental data.

8



The combination (30) enters the untagged angular distribution in the form

Im
nh
A�

~f(t)Af(t)
io

= (33)

�2jh(X1X2) ~f jHe�jBsih(X1X2)f jHe�jBsij cos(�f � � ~f)
�
e��Lt � e��H t

�
�(s)c ;

where ~f 2 fk ; 0 g and f =? denote linear polarization states [12, 13]. In order to

determine the weak phase �(s)c from (33), we have to know both jh(X1X2) ~f jHe�jBsij,
jh(X1X2)f jHe�jBsij and the strong phase di�erences �f � � ~f . Whereas the former quan-

tities can be determined straightforwardly from

h
jAf(t)j2

i
= 2jh(X1X2)f jHe�jBsij2e��Lt (f 2 fk; 0g) (34)h

jA?(t)j2
i

= 2jh(X1X2)?jHe�jBsij2e��H t; (35)

the latter ones can be obtained by combining the ratio of (33) for ~f = k and ~f = 0 given

by
Imf[A�

k(t)A?(t)]g
Imf[A�

0(t)A?(t)]g =
jh(X1X2)kjHe�jBsij
jh(X1X2)0jHe�jBsij

cos(�? � �k)

cos(�? � �0)
(36)

with the term of the untagged angular distribution corresponding to [13, 23]

Re
nh
A�
0(t)Ak(t)

io
= 2jh(X1X2)0jHe�jBsih(X1X2)kjHe�jBsij cos(�k � �0)e

��Lt: (37)

Consequently the angular distributions for the untagged Bs ! D�+
s (! D+

s )D
��
s (! D�

s )

and Bs ! J= (! l+l�)�(! K+K�) modes allow a determination of the weak phase �(s)c .

The rather complicated extraction of the strong phase di�erences �f � � ~f outlined

above, which is needed to accomplish this task, can, however, be simpli�ed considerably by

making an additional assumption. In the case of the color-allowed channel Bs ! D�+
s D��

s

the factorization hypothesis [25, 26], which can be justi�ed to some extent within the

1=NC{expansion [27], predicts rather reliably that the strong phase shifts are 0 mod �.

This prediction for the strong phases can be tested experimentally by investigating the

angular correlations for the SU(3)-related modes Bu;d ! D�+
s D�

u;d. Since Bs ! J= � is

on the other hand a color-suppressed transition, the validity of the factorization approach

is very doubtful in this case [28]. However, avor SU(3) symmetry of strong interactions

is probably a good working assumption and can be used to determine the hadronization

dynamics of Bs ! J= �, in particular the strong phase di�erences �f � � ~f , from an

analysis of the SU(3)-related B ! J= K� modes [23, 24]. These strategies should be

very helpful to constrain �(s)c with more limited statistics.

Whereas one expects �H < �L and a small value of �(s)c within the Standard Model,

that need not to be the case in many scenarios for \New Physics" beyond the Standard

Model (see e.g. [29]). The untagged data samples described by (26) and (27) allow then
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only the extraction of cos 2�(s)c and sin 2�(s)c up to some discrete ambiguities. In particular

they do not allow the determination of the sign of �� which could give us hints to physics

beyond the Standard Model. This feature is simply due to the fact that we cannot decide

which decay width is �L and �H , respectively, since we do not know the sign of ��.

Using, however, in addition the time-dependences of tagged data samples, sin 2�(s)c can

be extracted and the discrete ambiguities are resolved. With the help of the observables

corresponding to (27) even the sign of �� can then be extracted, which was missed

in a recent note [29]. In general, the ambiguities encountered in studies of untagged

data samples are resolved by incorporating the additional information available from

�mt�oscillations.

5 A determination of  using untagged data samples

of Bs ! K�+K�� and Bs ! K�0K�0

After our discussion of some exclusive �b! �cc�s transitions and a brief excursion to \New

Physics" in the previous section let us now consider the �b ! �uu�s decay Bs ! K�+(!
�K)K��(! �K) and investigate what can be learned from untagged measurements of its

angular distribution. Because of the special CKM-structure of the �b ! �s penguins [30],

their contributions to Bs ! K�+K�� can be written in the form

P 0
f = �jP 0

f jei�
f

P 0ei�; (38)

where f denotes �nal state con�gurations of K�+K�� with CP eigenvalue �fCP (see (5)),

�fP 0 are CP-conserving strong phases, the CP-violating weak phase has the numerical value

of � and the minus sign is due to our de�nition of meson states which is similar to the

conventions applied in [31].

The penguin contributions include not only penguins with internal top-quark ex-

changes, but also those with internal up- and charm-quarks [30]. Rescattering pro-

cesses are included by de�nition in the penguin amplitude P 0
f . For example, the pro-

cess Bs ! fD�+
s D��

s g ! K�+K�� (see e.g. [32]) is related to penguin topologies with

charm-quarks running in the loops as can be seen easily by drawing the corresponding

Feynman diagrams. Although such rescattering processes may a�ect jP 0
f j and �fP 0, they

do not modify the weak phase in (38).

On the other hand the contributions of the current-current operators appearing in

the low energy e�ective Hamiltonian (7), which are color-allowed in the case of Bs !
K�+K��, have the structure

T 0
f = �jT 0

f jei�
f

T 0ei; (39)
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where �fT 0 is again a CP-conserving strong phase. Consequently, combining these con-

siderations, we obtain the following transition matrix element for Bs ! (X1X2)f with

X1X2 = K�+K��:

h(X1X2)f jHe�jBsi = jP 0
f jei�

f

P 0

h
1� rfe

i
i
; (40)

where

rf �
jT 0

f j
jP 0

f j
ei(�

f

T 0
��f

P 0
): (41)

Hence the quantitiy �f de�ned through (13) is given by

�f =
1� rfe

�i

1� rfe+i
: (42)

Following the plausible hierarchy of decay amplitudes introduced in [31], we expect that

penguins play { in analogy toBs ! K+K� [33, 34] { the dominant role inBs ! K�+K��.

To evaluate the time-evolution of the observables of the untagged angular distribution

corresponding to real or imaginary parts of (18), we need 1� ��~f �f and ��~f � �f which are

given by

1 + ��~f �f =
2

Nf; ~f

h
1 �

�
r�~f + rf

�
cos  + r�~f rf

i
(43)

1� ��~f �f = i
2

Nf; ~f

�
r�~f � rf

�
sin  (44)

and

��~f + �f =
2

Nf; ~f

h
1�

�
r�~f + rf

�
cos  + r�~f rf cos 2

i
(45)

��~f � �f = � i 2

Nf; ~f

h
r�~f + rf � 2r�~f rf cos 

i
sin ; (46)

respectively, where

Nf; ~f � 1 � r�~f e
�i � rf e

i + r�~f rf : (47)

These combinations of ��~f and �f are multiplied in (18) by

h(X1X2) ~f jHe�jBsi�h(X1X2)f jHe�jBsi = jP 0
~f j jP 0

f jei(�
f

P 0
��

~f
P 0
)Nf; ~f : (48)

Here we have used the expression (40) to calculate this product of hadronic matrix el-

ements, which { in contrast to the case where a single CKM amplitude dominates (see

the cautious remark after (25)) { depends also on the weak phase  through Nf; ~f . How-

ever, these factors cancel in (18) so that we �nally arrive at the following set of equations

describing Bs ! (K�+K��)f :
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� �
~f
CP = �fCP = +1:

h
A�

~f(t)Af(t)
i
= 2 jP 0

~f j jP 0
f jei(�

f

P 0
��

~f
P 0
) (49)

�
hn
1�

�
r�~f + rf

�
cos  + r�~f rf cos2 

o
e��Lt + r�~f rf sin2  e��H t

i

� �
~f
CP = �fCP = �1:

h
A�

~f
(t)Af(t)

i
= 2 jP 0

~f
j jP 0

f jei(�
f

P 0
��

~f

P 0
) (50)

�
hn
1�

�
r�~f + rf

�
cos  + r�~f rf cos2 

o
e��Ht + r�~f rf sin2  e��Lt

i

� �
~f
CP = ��fCP = +1:

h
A�

~f (t)Af(t)
i
= i 2 jP 0

~f j jP 0
f jei(�

f

P 0
��

~f

P 0
) (51)

�
h
r�~f e

��H t � rf e
��Lt + r�~f rf

�
e��Lt � e��H t

�
cos 

i
sin :

The structure of these equations, which are valid exactly, is much more complicated than

that of (28)-(30) where a single CKM amplitude dominates to an excellent accuracy. Note

that a measurement of either the e��H t or e��Lt terms in (49) and (50), respectively, or

of non-vanishing observables corresponding to (51) would give unambiguous evidence for

a non-vanishing value of sin .

A determination of  is possible if one measures in addition the time-dependent un-

tagged angular distribution for Bs ! K�0K�0 which is a pure penguin-induced �b ! �sd �d

transition. Its time-evolution can be obtained from (49)-(51) by setting r ~f = rf = 0 and

depends only on the hadronization dynamics of the penguin operators.

There are two classes of penguin topologies as we have already noted briey after (9):

QCD and electroweak penguins originating from strong and electroweak interactions,

respectively. In contrast to na��ve expectations, the contributions of electroweak penguin

operators may play an important role in certain non-leptonic B-meson decays because

of the presence of the heavy top-quark [35, 36] (see also [37]-[40]). However, in the case

of the Bs ! K�K� transitions considered in this section, these contributions are color-

suppressed and play only a minor role compared to those of the dominant QCD penguin

operators.

If we neglect these electroweak penguin contributions, which has not been done in the

formulae given above and should be a good approximation in our case, and use furthermore

the SU(2) isospin symmetry of strong interactions, the Bs ! K�0K�0 observables can

be related to the Bs ! K�+K�� case. In terms of linear polarization states [12], these

observables �x jP 0
0j, jP 0

kj, jP 0
?j and cos(�0P 0 � �

k
P 0). Since the overall normalizations of

the untagged Bs ! K�+K�� observables can be determined this way, the e��Lt and
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e��H t pieces of the observables [jA0(t)j2], [jAk(t)j2] and Ref[A�
0(t)Ak(t)]g (see (49)) allow

another extraction of the CKM angle . The remaining observables can be used to resolve

possible discrete ambiguities. Needless to say, also the quantities rf and the QCD penguin

amplitudes Pf are of particular interest since they provide insights into the hadronization

dynamics of the QCD penguins. A detailed analysis of the decays Bs ! K�+K�� and

Bs ! K�0K�0 is presented in [41], where also the angular distributions are given explicitly.

Another interesting application of (49) is associated with the decays Bs ! K+K� and

Bs ! K0K0. Using again the SU(2) isospin symmetry of strong interactions to relate

their QCD penguin contributions (electroweak penguin contributions are once more color-

suppressed and are hence very small), the time-dependent untagged rates for these modes

evolve ash
jA(t)j2

i
= 2 jP 0j2

h
(1 � 2 jrj cos � cos  + jrj2 cos2 )e��Lt + jrj2 sin2  e��H t

i
(52)

and h
jA(t)j2

i
= 2 jP 0j2 e��Lt; (53)

respectively, where we have used

r � jrjei�: (54)

Here � is a CP-conserving strong phase and jrj = jT 0j=jP 0j. In general, there are a lot

fewer observables in \pseudoscalar-pseudoscalar" cases than in \vector-vector" cases. In

particular there is no observable corresponding to Ref[A�
0(t)Ak(t)]g. We therefore need

some additional input in order to extract  from (52). That is provided by the SU(3)

avor symmetry of strong interactions. If we neglect the color-suppressed current-current

contributions to B+ ! �+�0, which are expected to be suppressed relative to the color-

allowed contributions by a factor of O(0:2), this symmetry yields [31]

jT 0j � �
fK
f�

p
2 jA(B+ ! �+�0)j; (55)

where � is the Wolfenstein parameter [6], fK and f� are the K- and �-meson decay

constants, respectively, and A(B+ ! �+�0) denotes the appropriately normalized B+ !
�+�0 decay amplitude. Since jP 0j is known from Bs ! K0K0, the quantity jrj can be

estimated with the help of (55) and allows the extraction of  from the part of (52)

evolving with the exponent e��H t. Using in addition the piece evolving with e��Lt the

strong phase � can also be determined up to certain discrete ambiguities. Since one

expects jrj = O(0:2) [31, 33, 34], it may be di�cult to measure the e��H t contribution

to (52) which is proportional to jrj2. The value of  and the observable r estimated

that way could be used as an input to determine electroweak penguin amplitudes by

measuring in addition the branching ratios BR(B+ ! �0K+), BR(B� ! �0K�) and

BR(B+ ! �+K0) = BR(B� ! ��K0) as has been proposed in [33].
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Let us �nally note that (49)-(51) apply also to the mode Bs ! �0�, if we perform the

replacements

jP 0
f j ! jP 0EW

f j
�fP 0 ! �fEWP 0 (56)

rf ! jC 0
f j

jP 0EW
f j exp

h
i
�
�fC0 � �fEWP 0

�i
;

where C 0
f denotes color-suppressed contributions of the current-current operators and

jP 0EW
f j, �fEWP 0 are related to color-allowed contributions of electroweak penguin opera-

tors. Similar to the situation arising in Bs ! �0�, which has been discussed in [36]

(see also [38, 39, 40]), we expect that this decay is dominated by electroweak penguins.

Consequently its untagged angular distribution may inform us about the physics of the

corresponding operators. In respect of controlling electroweak penguins in a quantitative

way by using SU(3) relations among B ! �K decay amplitudes [33], the CKM angle 

is a central input. Therefore the new strategies to extract this angle in a rather clean

way from untagged Bs data samples presented in Sections 4 and 5 are also very helpful to

accomplish this ambitious task.

6 Summary

We have calculated the time-evolutions of angular distributions for Bs decays into �nal

states that are admixtures of di�erent CP eigenstates. Interestingly, due to the expected

perceptible Bs �Bs lifetime di�erence, the corresponding observables may allow the ex-

traction of CKM phases even in the untagged case where one does not distinguish between

initially present Bs and Bs mesons. As we have demonstrated in this paper, such studies

of the exclusive �b ! �cc�s modes Bs ! D�+
s D��

s and Bs ! J= �, which are dominated

to an excellent approximation by a single CKM amplitude, allow a determination of the

Wolfenstein parameter � thereby �xing the height of the usual unitarity triangle. Using

the CKM factor Rb / jVubj=jVcbj as an additional input,  can be determined both from �

and from mixing-induced CP-violation in Bd ! J= KS measuring sin 2�. A comparison

of these two results for  determined from Bs and Bd decays, respectively, would allow an

interesting test whether the corresponding mixing phases are described by the Standard

Model.

If we apply the SU(2) isospin symmetry of strong interactions to relate the QCD

penguin contributions to the �b! �uu�s mode Bs ! K�+K�� and to the �b! �sd �d transition

Bs ! K�0K�0, which should play the dominant role there, another extraction of  is

possible from untagged measurements of their angular distributions. Substituting the
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relevant variables appropriately, the results derived for Bs ! K�+K�� apply also to

Bs ! �0� which is expected to be dominated by electroweak penguin operators.

We will come back to these decays in separate forthcoming publications [23, 41]. The

case of Bs decays into �nal states that are not admixtures of di�erent CP eigenstates

but only of di�erent parity eigenstates is outlined in [5]. There we discuss how angular

correlations for untagged Bs decays governed by �b ! �cu�s quark-level transitions allow

also a determination of the CKM angle .
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